
PSI-Toolkit — an Extensible and Tightly Integrated Set of NLP Tools

Authors

University
Street, City, Country
email@email.com

Abstract
The paper reports on PSI-Toolkit, an extensible set of NLP tools developed at Adam Mickiewicz University in Poznań. All processors
of the toolkit operate on a common data structure called PSI-lattice. This feature allows the seamless incorporation of NLP tools created
by other researchers. PSI-Toolkit is licensed under LGPL, which allows for unrestricted commercial use.

1. Introduction
PSI-Toolkit (Graliński et al., 2012) is a set of linguis-

tic tools developed within a project financed by the Polish
Ministry of Science and Higher Education between 2011
and 2013. The toolkit consists of a set of tools that pro-
cess natural language texts in Polish, English, German and
a few other languages1. It focuses on machine translation
(both rule-based and statistical), but also includes tools re-
quired in other natural language processing tasks, such as
sentence splitting, tokenization, lexical and morhological
analysis or syntactic parsing.

PSI-Toolkit attempts to ensure extensibility by unify-
ing the communication between NLP modules. This is ex-
ecuted by the design of a universal data structure that can
be accessed by any type of an NLP tool.

This paper is organised as follows: Section 2. describes
the toolkit, focusing on the data structure. Section 3.
presents the target audience. Section 4. compares PSI-
Toolkit with other NLP toolkits. Summary and ideas for
future work are listed in Section 5..

2. System Description
PSI-Toolkit consists of a set of NLP tools called proces-

sors: readers, annotators, and writers. In a typical use-case
processors are combined into a pipeline, which starts with
a reader, followed by a sequence of annotators, and ends
with a writer. All processors in a pipe are separated by the
exclamation marks (chosen due to its similarity to the pipe
symbol):

a reader ! a sequence of annotators
! a writer

A reader initializes the main data structure, the so-
called PSI-lattice, from an external source of information.
An annotator (e.g. a tokenizer, a lemmatizer, a parser) adds
new annotations to the PSI-lattice, usually based on infor-
mation added by preceding annotations. Finally, a writer
produce an output in desired format.

1Different tools usually support different lan-
guages, for details refer to the official documentation
at http://psi-toolkit.amu.edu.pl/help/
documentation.html.

2.1. PSI-lattice
All PSI-Toolkit processors operate on a common

lattice-based data structure, called PSI-lattice. As de-
scribed by Graliński et. al (Graliński et al., 2012) PSI-
lattice is defined as a graph where vertices represent the
input string (one vertex per character) and edges represent
annotations.

A PSI-lattice provides a one-size-fits-all data structure
that contains all annotations generated by all processing
tools in a pipeline. The structure provides a standardized
way to pass around alternative interpretations. This al-
lows for delayed disambiguation, i.e. a higher-order tool
may disambiguate alternatives provided by a lower-order
tool (Graliński et al., 2012). A PSI-lattice can be con-
structed for entire corpora as a single data structure or cre-
ated and processed in a line-by-line fashion.

2.2. PSI-Toolkit Processors
The current list of PSI-Toolkit processors (39 in total)

is available in documentation2. The function of each PSI-
Toolkit processor can be customized by means of switches
(options), again mimicking command line pipelines.

Readers read data from the input stream, retrieve tex-
tual information and initiate PSI-Lattice. At present, PSI-
Toolkit readers support raw text (txt-reader), Portable
Document Format (pdf-reader), various XML-based
formats (e.g. XHTML, OpenDocument, Open XML for-
mats — apertium-reader), the UTT format (Obręb-
ski and Stolarski, 2006) (utt-reader) and the NKJP
format (Przepiórkowski et al., 2008) (nkjp-reader).

A special processor — guessing-reader —
guesses the input file format and calls an appropriate
reader. It is used by default when a processing pipeline
does not include a reader.

PSI-Toolkit annotators add new edges to PSI-lattice
spanning over characters. They are categorised into several
groups:

• Tokenizers: a sentence splitter using SRX (Seg-
mentation Rules eXchange3) standard called
srx-segmenter and multi-language tokenizer
(tp-tokenizer).

2http://psi-toolkit.amu.edu.pl/help/
documentation.html

3http://www.gala-global.org/
oscarStandards/srx/srx20.html



• Lemmatizers and lexicons: a dictionary-based multi-
language lemmatizer called lammerlema, a bilin-
gual lexicon for machine translation (bilexicon)
and a universal lexicon for generic mapping tasks
(mapper).

• Taggers: metagger, a part-of-speech tagger
based on the maximum entropy classification;
inflector, a tool for generating inflected forms
of lemmatized words and lang-guesser, an au-
tomatic language identification tool.

• Parsers: the Puddle rule-based shallow parser
(puddle) modeled on Spejd parser (Buczyński
and Przepiórkowski, 2008), the syntax
parser (Skórzewski, 2013) for Polish (gobio)
incorporated from Translatica (a commercial
machine translation system), and the Link
Grammar Parser (Sleator and Temperley, 1993)
(link-parser).

• Translators: a rule-based machine translation system,
again adapted from Translatica (translator), a
syntax-based statistical machine translation applica-
tion Bonsai (bonsai).

Writers output all or selected PSI-lattice edges in
a required format. Writers can convert a PSI-lattice
into a human-readable way (simple-writer), pro-
duce tagged output (bracketing-writer), draw sim-
ple graphs (gv-writer), generate the JSON format
(json-simple-writer), or print the complete infor-
mation stored in PSI-lattice.

If no writer is specified, the simple-writer selects
the most appropriate edges to be printed out based on the
last annotator in the sequence. For example, if a pipeline
ends with a tokenizer, then the writer returns only tokens
separated by whitespaces.

2.3. Use Cases
Language tools of PSI-Toolkit can be accessed in var-

ious ways: the psi-pipe command-line tool, bindings for
Perl and Python programming languages, a graphical user
interface4 and JSON API5.

3. Target Audience
PSI-Toolkit is addressed to three types of users: NLP

professionals, linguists and NLP or IT students (Jassem,
2012). Experienced Unix users apply the command-line
tool psi-pipe in combination with other Unix commands.
Such users are prompted to compile the source code and
adjust existing processors to their requirements (e.g. by
adding new rule files or by training their own statistical
models).

For less computer-savvy users, such as linguists or
translators we developed a web interface which offers the
same functionalities as the command-line tool in a more
user-friendly way. The web portal includes tutorial and
end-to-end usage examples.

4http://psi-toolkit.amu.edu.pl/
5http://psi-toolkit.amu.edu.pl/json.psis

PSI-Toolkit command-line tools is also intended to
serve educational purposes. We believe that the auto-
completing function (see Section 4.2.) will help students
understand the general issues of natural language process-
ing.

4. Comparison to Other NLP Systems
We shall limit the comparison to the following well-

known toolkits: GATE (Cunningham et al., 2011), NLTK
(Loper and Bird, 2002), Apertium (Forcada et al., 2011)
and Stanford NLP (Manning and Schütze, 1999). The
comparison will focus on the aspects of extensibility, us-
ability and possibility of commercial use.

4.1. Flexibility and Extensibility
To the best of our knowledge PSI-Toolkit is distin-

guished from other toolkits by its universal, internal data
structure, which organizes communication between its
components. Other toolkits define input and output textual
data formats for each tool instead.

PSI-lattice allows for easy extension. Adapting a new
tool to PSI-Toolkit requires no more than designing a
mechanism of reading and writing data from and into the
data structure (Jassem, 2013). We have succesfully tested
this procedure with the Link Grammar (Sleator and Tem-
perley, 1993). PSI-Toolkit allows users to provide custom
linguistic resources for various tools. The same feature is
applied in Apertium — limited for Machine Translation.

Another PSI-Toolkit feature, boosting its flexibility, is
the psi-pipe console interface. It enables the use of PSI-
Toolkit processors together with — ofter underestimated
— Unix text processing commands.

4.2. Usability
Like other NLP toolkits, PSI-Toolkit provides detailed

documentation with tutorials and code snippet generators.
Unlike NLTK, PSI-Toolkit does not require its users to per-
form any computer programming.

Using PSI-Toolkit pipelines is facilitated by a novel
auto-completing function. The function guesses how a pro-
cessor pipeline should be completed to make it a working
command. The completion concerns completion of names
of processors or required switches. The following exam-
ples should clarify the idea:

• Suppose a user wants to parse a text in an unspecified
language and format. The command parse suffices
to execute the task. The processor auto-completing
feature expands the user’s command to the following
pipeline:

guess-format ! guess-language
! segment ! tokenize ! lemmatize
! parse

• The switches are auto-completed in order to fit to
the first user choice, e.g. the first pipeline is auto-
completed to the second one:



tokenize --lang pl ! segment
tokenize --lang pl ! segment

--lang pl

• Another functionality intended for the facilitation of
use is aliases6, i.e. alternative names for proces-
sor sequences (including their options). For instance,
translate-plen is an alias for:

gobio --lang pl ! bilexicon
--lang pl --trg-lang en
! transferer --lang pl
--trg-lang en

4.3. Commercial Use
PSI-Toolkit is licensed under LGPL, which allows for

full commercial use. This is rarely seen in other toolkits
(Apertium and Stanford NLP are licensed under GPL). So
far, two commercial projects based on PSI-Toolkit have al-
ready been completed.

5. Summary
The paper describes an open-source NLP toolkit,

whose unique feature is a universal data structure. The
goal of the system developers is to gather, in one environ-
ment, NLP tools designed in various research centers. This
should result in new cases of co-operation cases between
NLP researchers. The toolkit simplifies a potential use of
various types of NLP tools in one complex system. Fu-
ture work will focus on integration of new tools as well as
efficiency and scalability issues.

6. References
Buczyński, Aleksander and Adam Przepiórkowski, 2008.

Spejd demo: An open source tool for partial parsing
and morphosyntactic disambiguation. In Proceedings
of the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08). European Language
Resources Association (ELRA).

Cunningham, Hamish, Diana Maynard, Kalina Bontcheva,
Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve
Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, Thomas Heitz, Mark A. Greenwood, Horacio
Saggion, Johann Petrak, Yaoyong Li, and Wim Peters,
2011. Text Processing with GATE (Version 6).

Forcada, Mikel L., Mireia Ginestí-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan Antonio
Pérez-Ortiz, Gema Ramírez-Sánchez Felipe Sánchez-
Martínez, and Francis M. Tyers, 2011. Apertium: a
free/open-source platform for rule-based machine trans-
lation. Machine Translation:127–144. Special Issue:
Free/Open-Source Machine Translation.

Graliński, Filip, Krzysztof Jassem, and Marcin Junczys-
Dowmunt, 2012. PSI-Toolkit: Natural language pro-
cessing pipeline. Computational Linguistics - Applica-
tions, 458:27–39.

6http://psi-toolkit.amu.edu.pl/help/
aliases.html

Jassem, Krzysztof, 2012. PSI-Toolkit — how to turn a lin-
guist into a computational linguist. In Petr Sojka, Ales
Horák, Ivan Kopecek, and Karel Pala (eds.), Proceed-
ings of 15th International Conference on Text, Speech
and Dialogue, Lecture Notes in Computer Science.

Jassem, Krzysztof, 2013. PSI-Toolkit — an open archi-
tecture set of nlp tools. In Zygmunt Vetulani and Hans
Uszkoreit (eds.), Proceedings of the 6th Language and
Technology Conference. Poznań.

Loper, Edward and Steven Bird, 2002. NLTK: The natural
language toolkit. In Proceedings of the ACL-02 Work-
shop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational
Linguistics - Volume 1, ETMTNLP ’02. Association for
Computational Linguistics.

Manning, Christopher D. and Hinrich Schütze, 1999.
Foundations of Statistical Natural Language Process-
ing. Cambridge, MA, USA: MIT Press.

Obrębski, Tomasz and Michał Stolarski, 2006. UAM text
tools — a flexible NLP architecture. Proceedings of
LREC 2006.

Przepiórkowski, Adam, Rafał L. Górski, Barbara
Lewandowska-Tomaszczyk, and Marek Łaziński, 2008.
Towards the National Corpus of Polish. In Proceedings
of the 6th Language Resources and Evaluation Confer-
ence (LREC 2008).

Skórzewski, Paweł, 2013. Gobio and PSI-Toolkit: Adapt-
ing a deep parser to an NLP toolkit. In Zygmunt Vetu-
lani and Hans Uszkoreit (eds.), Proceedings of the 6th
Language and Technology Conference. Poznań.

Sleator, Daniel D. and Davy Temperley, 1993. Parsing En-
glish with a link grammar. In Proc. Third International
Workshop on Parsing Technologies.


